
Eur. Phys. J. B 34, 257–263 (2003)
DOI: 10.1140/epjb/e2003-00219-y THE EUROPEAN

PHYSICAL JOURNAL B

On the dechanneling of protons in Si [110]

M. Kokkoris1,a, G. Perdikakis1, S. Kossionides1, S. Petrović2,b, and E. Simoen3
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Abstract. In the present work, the dechanneling of protons in Si [110] is studied combining theoretical
Monte-Carlo and phenomenological simulation results in the energy range Ep = 1.8 − 2.4 MeV. The
applicability of a Gompertz type sigmoidal dechanneling function, with two parameters, k and xc, which
represent characteristic dechanneling rate and range, respectively, is examined, yielding the successful
reproduction of backscattering spectra of channeled protons along the Si [110] crystal axis. The results are
compared to the ones obtained in the past for different beam – crystal orientation combinations and an
attempt is made to explain the occurring similarities and discrepancies.

PACS. 61.85.+p Channeling and related phenomena – 61.80.Jh Ion radiation effects

1 Introduction

The problem of the dechanneling of ions, i.e. the transition
of the channeled ions into nonchanneled ones as they pen-
etrate into the crystal, has been studied since the early
days of channeling in order to accurately reproduce the
experimental channeling spectra in the backscattering ge-
ometry [1–4]. Such an accurate description has profound
consequences in both the scientific and the technological
context [5].

Theoretical calculations concerning the dechanneling
mechanism are based either on the analytical description
of ion channeling in crystals, founded by Lindhard [6],
or on the Monte Carlo numerical method, founded by
Barrett [7]. Lindhard’s approach used the formalism of
statistical mechanics, including the continuum approxima-
tion and the assumption of a statistical equilibrium in the
transverse plane. Barrett’s numerical approach used ion-
atom scattering theory and a computer simulation method
for three-dimensional following of ion trajectories in crys-
tal channels. Although this approach is more complex, a
number of calculations have shown that it is more accurate
than Lindhard’s one. As a clear example, Krause et al. [8]
obtained coincidence of the experimental and calculated
angular distributions of 2–9 MeV protons and 6–30 MeV
Cq+ ions (q = 4–6), channeled in thin Si [100] crystals, us-
ing Barett’s approach, while Lindhard’s approach would
have given qualitatively different angular distributions.
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In the analytical approach, a simple exponential be-
havior of the dechanneling function, i.e., dechanneling
fraction of ion beam inside the crystal as a function of
crystal depth, has been derived with the assumption of
constant dechanneling rate [9,10]. More accurate descrip-
tion of the dechanneling process requires solution of a dif-
fusion type differential equation (Fokker-Planck equation)
with exact coefficients [11–14]. Recently, an interesting
attempt was presented, concerning proton dechanneling
in a diamond crystal [15]. Nevertheless, to the authors’
best knowledge, an accurate reproduction of experimental
channeling spectra in the backscattering geometry with
the implementation of diffusion models is still lacking.

Simulations of spectra in RBS channeling experi-
ments have also been reported using Monte Carlo calcula-
tions [16,17] or phenomenological approaches [18,19] with
varying success. The phenomenological attempts were
mainly based on the assumption of a constant dechannel-
ing rate, i.e. an exponential dechanneling function [19]. Al-
though certain aspects of the channeling spectra have been
reproduced both qualitatively and quantitatively well, the
complete understanding of the dechanneling process has
not yet been achieved.

In the present work, the dechanneling process in the
case of protons, in the energy range Ep = 1.8–2.4 MeV,
channeled in a Si [110] crystal shall be analyzed, combin-
ing theoretical Monte-Carlo results with a phenomenolog-
ical approach, in order to accurately describe the dechan-
neling mechanism through a simple analytical form of
the dechanneling function. The Gompertz type sigmoidal
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dechanneling function with only two parameters, k and xc,
denoting the characteristic dechanneling rate and range
respectively, leads to an accurate reproduction of RBS
channeling spectra. It also provides a valuable insight of
the dechanneling mechanism. The results are compared
to the ones obtained in the past, concerning channeling
parameters for different beam – crystal orientation com-
binations in the same energy range, and an attempt is
made in order to explain the occurring similarities and
discrepancies.

2 Theoretical approach – Monte-Carlo
calculations

In order to study theoretically the dechanneling process,
a Monte-Carlo simulation code based on the continuum
approximation has been used. This code has already been
successfully used for the analysis of the angular distribu-
tions and transmission patterns of channeled ions, and it
has been described in detail elsewhere [20,21]. The tra-
jectory of a channeled ion is followed via the numeri-
cal solution of its equations of motion in the transverse
plane. The continuum interaction potential of the ion and
an atomic string of the crystal is derived from Moliere’s
approximation of the Thomas-Fermi ion-atom interac-
tion potential [8,20,21]. Thomas-Fermi screening radius
a = [9π2/(128Z2)]1/3a0, where Z2 is the atomic number
of atoms in the crystal, and a0 is Bohr radius, was used fol-
lowing the experience of Krause et al. [8]. Effects of energy
loss and electron multiple scattering of the channeled ions
were taken into account [21]. The effect of thermal vibra-
tions of the target atoms was included for the continuum
potential of the ith atomic string as:

U th
i = Ui +

σ2
th

2
(∂xxUi + ∂yyUi), (1)

where Ui is the continuum potential of the ith atomic
string with the thermal vibrations of the atoms neglected,
and σth is the one-dimensional thermal vibration ampli-
tude of the atoms [20,21], but the uncertainty of the scat-
tering angle of the ion caused by the effect of thermal
vibrations of the atoms of the crystal was not included in
the code. The use of expression (1) is justified when the
distance between the ion and the atomic string is large
compared to the one-dimensional thermal vibration am-
plitude [22]. The continuum potential of the crystal is the
sum of the continuum potentials of the atomic strings.
Angular divergence of the ion beam was also taken into
account [21].

In the case under consideration i.e., Si [110] crystal,
the channel is rhombic with two atomic strings per vertex
of the rhomb. The atomic strings lying on the two nearest
(relative to the channel axis) rhombic coordination lines
were taken into account. The one-dimensional thermal vi-
bration amplitude of the crystal atoms (for room tempera-
ture) was taken to be 0.00744 nm [23]. Calculated screen-
ing radius was 0.0194 nm. The thickness of one atomic

Fig. 1. Monte-Carlo results showing the dechanneling ratio for
1.8 MeV protons channeled along the Si [110] crystal axis, as
well as, sigmoidal and exponential fitting curves. The Gom-
pertz type sigmoidal fitting function reproduces the results
much more accurately than the simple exponential one.

layer of the crystal, d, was 0.384017 nm [24]. Critical an-
gles for channeling Ψc ≡ (

2Z1Z2e
2/Epd

)1/2, where Z1 is
atomic number of projectile (proton), for the energy range
of protons into consideration, Ep = 1.8–2.4 MeV, were in
the range of Ψc = 7.86 − 6.61 mrad, respectively. A pro-
ton was considered to be dechanneled, at a certain crystal
depth, if its angle with the channel axis was larger than
the critical one. The cut-off energy was set to Ep/3, i.e.,
protons at large crystal depths whose energies were less
then the one third of the initial energy were not taken
into account. Also, protons whose initial impact param-
eters were less than the screening radius were treated as
backscattered. The initial number of protons was ∼ 5000
and it was chosen considering optimum computing time
and statistical accuracy.

Figure 1 shows the calculated dechanneling function
in the case of 1.8 MeV protons. The angular divergence
of the proton beam was taken to be 0.3 mrad. It is
clear from Figure 1 that the dechanneling function is a
sigmoidal one. In order to find an analytical expression
that approximates this dechanneling function, Gompertz
type sigmoidal function was adopted:

Nd = No · e−exp(−k (x−xc)) − e−exp(kxc)

1 − e− exp(kxc)
(2)

where Nd is the number of dechanneled ions, No is the
initial number of ions, x is the crystal depth, k and xc are
fitting parameters representing the characteristic dechan-
neling rate and range, respectively; it is assumed that
the initial number of dechanneled ions is zero and that
it approaches No for very large crystal depths. The Gom-
pertz type sigmoidal function, obtained in a fitting pro-
cedure in which the fitting parameters are varied in order
to find the best approximation of the dechanneling func-
tion, is shown in Figure 1. As a comparison, the simple
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exponential approximation of the dechanneling function,
given by the expression:

Nd = No ·
(
1 − e−kx

)
(3)

where k is a constant (dechanneling rate independent of
crystal depth), is also shown in Figure 1. It is clear that the
Gompertz type sigmoidal function is both quantitatively
and qualitatively a much better approximation than the
exponential one.

Analysis of expression (2) shows that the parameter xc

corresponds to the inflection point of the sigmoidal func-
tion and, thus, it can be attributed to the characteristic
dechanneling range. Also, the distribution of the number
of dechanneled protons per unit length as a function of
crystal depth, shown in Figure 2, is asymmetric, has a
maximum at inflection point xc, a fast rise for x < xc and
a slow decay (tail) for x > xc. The dechanneling rate, i.e.
the probability for dechanneling per unit crystal depth, in
the case of Gompertz type dechanneling function (2), is
given by:

− 1
Nc

dNc

dx
=

ke−k(x−xc)

eexp(−k(x−xc)) − 1
(4)

where Nc = No − Nd is the number of channeled ions.
Analysis of expression (4), for the cases under consid-
eration, shows that the dechanneling rate is a positive,
increasing function, with a horizontal asymptote equal
to k. This behavior of the dechanneling rate, as well as,
of the distribution of the number of dechanneled protons
per unit length, can be explained with impact-parameter
(trajectory) dependence of the dechanneling process, i.e.,
with the fact that the ions with initially small impact pa-
rameters (relative to an atomic string) dechannel much
faster than the ones with initially large impact parame-
ters. For large crystal depths (a few times larger than xc),
the channeled fraction of the beam consists mostly of ions
being initially around the channel axis and the dechannel-
ing process is characterized by an almost constant (slowly
changing) dechanneling rate. Thus, the parameter k repre-
sents the characteristic dechanneling rate, corresponding
to large crystal depths and to ions initially being around
the channel axis. Figure 2 also shows a comparison be-
tween two curves, one corresponding to the Gompertz type
dechanneling function (2) and one following the Boltz-
mann type sigmoidal dechanneling function:

Nd = N0
ek(x−xc) − e−kxc

1 + ek(x−xc)
(5)

with two fitting parameters, xc and k, having the same
interpretation as in the Gompertz case. Both curves were
obtained in a fitting procedure in which the parameters
are varied in order to find the best approximation of the
dechanneling function. It is clear that the Gompertz type
dechanneling function describes the dechanneling process
better than the Boltzmann one.

It should be noted, that inclusion in the Monte Carlo
code of the uncertainty of the scattering angle of the ion
caused by the effect of thermal vibrations of the atoms

Fig. 2. Monte-Carlo results showing the number of dechan-
neled ions per unit length as a function of crystal depth, as
well as, the corresponding Gompertz and Boltzmann curves.
The Gompertz curve is clearly a better approximation to the
theoretical results.

of the crystal would not qualitatively change the energy
dependence of the characteristic dechanneling parameters,
since it has the same energy dependence (≈ 1/E) as the
electron multiple scattering effect. Moreover, in all cases
analyzed in the present work, most of the ions experience
collisions with the atomic strings at distances larger than
the one-dimensional thermal vibration amplitude of the
crystal atoms (at room temperature), in accordance with
the use of expression (1).

3 Phenomenological approach

A new phenomenological approach was proposed recently,
based on the use of a nuclear resonance as a marker for
the crystal depth [19], and on the assumption of an ex-
ponential dechanneling function of the ions inside crystal
channels [10]. The observation of nuclear reaction yield
in channeling is attributed to the dechanneling of pro-
tons after they travel for a distance along the channel
axis. This approach led to the successful simulation of
channeling backscattering spectra in the systems p+28Si
[100] [19], p+28Si [111] [25], p+SiO2 (c-axis) [26], and
p+SiC [0001] [27].

In that approach, the dechanneling process was defined
by only two parameters, α, the ratio of stopping powers in
the channeling and random directions (taken as a constant
over the energy range in which the particle travels inside
the channel) and λ ≡ 1/k, the mean channeling distance,
where k is the dechanneling rate (constant). This tech-
nique allowed in situ measurements and could be applied
to several bulk single crystals (simple or compound) with-
out any particular sample preparation, combining NRA
and channeling. The existence of a resonance in the spec-
trum however, was not an absolute requirement, although
it increased the accuracy of the results. It should be noted
here that the values reported for α corresponded to the
average trajectories of channeled ions.
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The method used for the simulation of the energy spec-
tra has been described in detail elsewhere [19]. The basic
assumption was that beam particles dechannel exponen-
tially (3). However, one can assume a Gompertz type sig-
moidal behavior (2) for the dechanneling of the incoming
beam, as suggested from the Monte-Carlo simulation re-
sults, and that can also be incorporated in the algorithm.

The part of the beam that has been dechanneled, is
considered to lose energy at a rate corresponding to the
one calculated with the coefficients of Ziegler [28] in the
random direction, while the part of the beam still chan-
neled is considered to lose energy at a fraction of that rate.
Thus, specific channeling energy loss is given by:

Schannel(E) = α · SR(E) (6)

where α is assumed to be energy independent, and SR(E)
is the specific energy loss in the random direction. The
validity of this hypothesis has been discussed analytically
in the past [27]. It should be noted here, that although
α is expected to decline with energy [29], previous exper-
iments did not show a consistent variation with energy
in the range of 1–2.5 MeV/amu [30]. An analytical ex-
pression for α – if established – could be incorporated
in the simulation algorithm, but the quality of the simu-
lated spectra in several crystals studied using this method,
showed that this first-order approximation of a constant
α value is valid for the energy interval into consideration.
For the calculations, the target was divided into slices of
thickness dx = 20 µg/cm2 (∼ 862 nm), and the beam was
split into two components, a channeled and a dechanneled
one. The evolution of each component was then followed
throughout the target.

For the simulation of the experimental spectra, the ac-
curate knowledge of the energy dependence of the elastic
cross section of the reaction 28Si(p,p)28Si is mandatory.
Thus, the excitation function was obtained from the lit-
erature [31] for the laboratory angle into consideration.
The effect of the beam straggling was accounted for, us-
ing Bohr’s equation, but not the multiple scattering effect,
which is important at low energies. The initially dechan-
neled part of the beam (2–4%, as determined by the χmin

from the RBS/C spectra) was taken into account. The ex-
citation function used, reproduced the spectra in the ran-
dom direction within 5–7% accuracy, and was thus subse-
quently used for the simulation of the corresponding chan-
neling spectra. The problem of the cross section used in
NBS is a crucial limiting factor for the accuracy of the re-
sults. It should be also noted that the depth resolution of
this technique strongly depends on the characteristics of
any existing resonances, typically varying between 1000–
2000 nm for the energy range into consideration.

Therefore, with given α and λ, in the case of exponen-
tial dechanneling, and α, k and xc, in the case of Gompertz
type sigmoidal dechanneling, simulated channeled spectra
can be generated and compared to the experimental ones.
The best possible fit is determined after χ2 minimization,
using the code MINUIT developed at CERN.

4 Experimental procedure

The experiments were performed at N.C.S.R ‘Demokri-
tos’, Athens, Greece, using the 5.5 MV T11 TAN-
DEM Accelerator. Protons were accelerated to energies
Ep = 1.8 − 2.4 MeV and were lead to a scattering chamber
(RBS-400 by Charles Evans Co), which included a 4-motor
goniometer system capable of determining the target ori-
entation with an accuracy of 0.01◦. The detection system
consisted of a single Si surface barrier detector, placed
at an angle Θlab = 170◦ with respect to the beam, hav-
ing an overall resolution of 12 keV for α-particles (8 keV
for protons). The beam divergence was less than 0.02◦
(∼ 0.3 mrad) due to the long collimation system (con-
sisting of two 1.5 mm collimator apertures having a dis-
tance of 3.5 m between them and 60 cm between the anti-
scatterer and the target). The vacuum pressure was kept
constant during the measurements (5 × 10−7 mbar). The
amorphous carbon deposition on the target’s surface was
negligible. This was verified in the experimental channel-
ing spectra by the absence of a particularly strong reso-
nance signal in the p+12C system at Ep = 1.75 MeV [32],
monitored during the process. The beam spot size was
approximately 2 × 2 mm2 and the beam current did not
exceed 5 nA on target.

The target used was a Czochralski Si crystal wafer
provided by IMEC, boron doped to a resistivity of
10−15 Ω. cm, cut normally to the plane (110). Before
all the measurements the wafer was boiled in acetone
for 5 min for the removal of all the biological contam-
inants and was dipped for 10 s into a 5% HF solution
for the removal of the native oxide. Subsequently, a po-
lar and an angular scan were performed in order to align
the beam to the [110] axis of the crystal. The channeling
angle was found to be approximately 0.3◦. For the po-
lar scan, the target was tilted by 3◦ and rotated around
the beam axis. The fine-tuning of the channeling position
was finally achieved via an angular scan. Due to the high
inflicted dose and in order to avoid any radiation dam-
age effects coming from the trace region of the implanted
protons, the channeling spectra were acquired at several
positions on the wafer, differing by at least 2 mm. The ex-
cellent crystalline behavior of the sample is demonstrated
in Figure 3a where the RBS/C spectra are presented at
Ep = 1.5 MeV. The χmin was less than ∼2% in the whole
energy range.

Spectra of protons backscattered at an angle
Θlab=170◦ were taken within the energy interval, Elab =
1.8–2.4 MeV, in steps of 50 or 100 keV, for the same accu-
mulated charge of 4 µCb, in both random and aligned
angles of incidence. The reaction 28Si(p,p)28Si exhibits
two sharp resonances in that energy interval, at energies
Elab = 1.67 MeV and 2.09 MeV, having natural widths
of Γ = 52.0 ± 0.8 and 15.6 ± 0.6 keV, respectively. The
shape of the spectra as well as the differences between the
channeling and the random mode are shown in Figure 3b
for Ep = 2.15 MeV. The interference patterns between the
compound and the direct elastic (Rutherford) scattering
are evident. The 1.67 MeV resonance is diffused, due to
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Fig. 3. (a) RBS/C spectra at Ep = 1.5 MeV showing the
excellent crystalline quality of the target, yielding a χmin ∼2%
(b) RBS/C spectra at Ep = 2.15 MeV showing the resonance
interference patterns. The 2.09 MeV resonance appears clearly
close to the surface, while the 1.67 one is diffused at greater
depths.

the effect of energy straggling at greater depths, while the
2.09 MeV one appears sharp, closer to the surface.

5 Experimental results and discussion

The choice of Si [110] for the assessment of the precise
dechanneling function originated from geometrical con-
siderations, since this crystallographic orientation repre-
sents the largest channel in Si. Therefore, any discrepan-
cies from the exponential dechanneling function would be
easily monitored. And indeed, as it was mentioned in pre-
vious publications concerning the [100] and [111] orienta-
tions [19,25], there were small discrepancies near the crys-
tal surface, or at small depths, as well as at large depths,
indicating the existence of a more complicated dechannel-
ing function. The excellent crystalline quality of the Si
[110] crystal, and its crystallographic geometry, revealed
that the sigmoidal approach (Gompertz type sigmoidal
dechanneling function) is much more accurate than the
exponential one in reproducing the experimental spectra,
as shown clearly in Figure 4a, for Ep = 1.8 MeV, where

Fig. 4. Experimental channeling spectra in the backscattering
geometry, along with the simulation results using the exponen-
tial and the Gompertz type sigmoidal dechanneling functions
in the cases of: (a) Ep = 1.8 MeV, (b) Ep = 2.2 MeV and (c)
Ep = 2.4 MeV.

the 1.67 MeV resonance appears close to the surface. The
accuracy of the Gompertz type sigmoidal dechanneling
function was observed in all the energy range considered
here, although the differences between the two dechannel-
ing functions become less evident at higher energies, as
shown in Figures 4b and c, for Ep = 2.2 and 2.4 MeV,
respectively. This is related to the limitations of the
phenomenological approach, as will be analyzed in the fol-
lowing paragraphs.
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Fig. 5. The stopping power ratio, α, as a function of energy
(Ep = 1.8–2.4 MeV). The average value determined was 0.65±
0.02.

Another interesting result was the invariance of the
parameter α with the energy, when the Gompertz type
sigmoidal dechanneling function was used, as shown in
Figure 5, yielding an average value of 0.65 ± 0.02. It is
also interesting that α very weakly depends on the energy
when the exponential dechanneling function was used, and
did not vary for more than 5% comparing to the values ob-
tained using the sigmoidal dechanneling function. Those
results are in very good agreement with values of param-
eter α reported for the Si [100] and [111] crystals, namely
0.69± 0.01 and 0.74± 0.01 respectively, using exponential
dechanneling function, and provides an indirect, though
conclusive proof that α is inherent to the crystal chan-
nel axis, having only a weak dependence on the choice of
the dechanneling mechanism. This is also in accordance
with the assumption that parameter α is energy indepen-
dent. Nevertheless, since the investigated energy region
was rather limited, further work is required, over a broad
energy range and with a variety of beam – crystal orien-
tation combinations, before a complete understanding of
the behavior of the stopping power ratio is accomplished.

The use of the sigmoidal dechanneling function re-
quires the introduction of two parameters, namely xc

and k. Thus, the simplicity of utilizing only one param-
eter, λ, denoting the ‘mean channeling distance’, in the
case of the exponential dechanneling function, is lost, but
the physical meaning of the two parameters reveals the
complexity of the dechanneling process in a more accu-
rate way, as analyzed in the theoretical section. It is also
evident, that if one uses a simple exponential formula (3)
for the description of the dechanneling process, then, for
the χ2 minimization algorithm to converge, and in order to
attain a good simulation at greater depths, the dechannel-
ing of the proton beam near the surface, or at small depths
inside the crystal, has to be clearly overestimated, while at
greater crystal depths there always exists a slight under-
estimation (Fig. 1). The weak dependence of the stopping
power ratio, α, on the choice of the dechanneling function

Fig. 6. (a) Dechanneling rate, k, and (b) dechanneling range,
xc, as a function of energy, according to the theoretical and
the phenomenological approaches. The experimental errors are
indicated in the graphs.

renders the results mentioned in previous works [19,25–28]
reliable, but the use of the sigmoidal dechanneling func-
tion provides a superior reproduction of the experimental
spectra in the simulation procedure, as shown in Figure 4,
and should be considered as the key factor for the expla-
nation of discrepancies observed in the past in the cases
of α+MgO [100] and α+Al2O3 [01̄02̄] [33].

Nevertheless, if one compares the results of the Monte-
Carlo simulation with those of the phenomenological one,
concerning the evolution of the dechanneling parameters
k and xc with respect to the proton beam energy, the de-
viations are large and become even more profound with
the increase of energy, as shown in Figures 6a and b.
In the case of the characteristic dechanneling rate, k,
shown in Figure 6a, the energy trend is the same for
both approaches, i.e. k is decreasing with energy, but with
increasing discrepancies denoting that the phenomenolog-
ical approach clearly underestimates the ‘real’ dechannel-
ing rate. For the characteristic dechanneling range, xc,
shown in Figure 6b, the simulation results differ consider-
ably, qualitatively and quantitatively, from the theoretical
predictions, suggesting a decrease rather than an increase
of xc with energy. Behind this apparent disagreement lies



M. Kokkoris et al.: On the dechanneling of protons in Si [110] 263

the basic limitation of the phenomenological approach,
namely the inherent ‘mean’ or ‘single energy’ approxima-
tion. As was analyzed in the phenomenological section, the
channeled beam is considered to be monoenergetic, losing
energy at discrete steps. This contradicts the impact pa-
rameter (trajectory) dependence of the channeling energy
loss, which is related to the impact parameter dependence
of electron density in the crystal channel and thus to the
number of inelastic ion collisions with the electrons. If one
assumes an energy distribution of a Gaussian form for the
channeled part of the beam inside the crystal, having a
width Γ increasing with depth, then the simulation re-
sults converge towards the Monte-Carlo ones. This, how-
ever, requires the introduction of additional parameters
in the fitting procedure, thus impeding its applicability
and usefulness. It is also evident, that the smearing out
of the differences between the spectra at high energies,
obtained using the exponential and the sigmoidal dechan-
neling functions, as illustrated in Figure 4, can be entirely
attributed to this fundamental issue.

6 Conclusions

In the present work, the Gompertz type sigmoidal dechan-
neling function, with two parameters, k and xc, rep-
resenting characteristic dechanneling rate and range,
respectively, was introduced and analyzed both by the-
oretical, Monte-Carlo calculations, and by a phenomeno-
logical model. The simulation results clearly demonstrate
that the sigmoidal dechanneling function can accurately
describe the dechanneling of protons impinging along the
Si [110] crystal axis, and thus it is superior to the simple
exponential one in reproducing the experimental channel-
ing spectra in the backscattering geometry. At the same
time, it offers a valuable insight concerning the under-
standing of the dechanneling mechanism.

The differences between the theoretical predictions and
the simulation results concerning the energy dependence
of parameters k and xc, are attributed to the basic limita-
tion of the phenomenological approach, namely the ‘mean’
or ‘single energy’ approximation of the channeled part of
the beam inside the crystal. Moreover, α, the stopping
power ratio, remains stable within 5% for the energy range
into consideration (Ep = 1.8–2.4 MeV), and is only weakly
dependent on the choice of the dechanneling function.

Although the sigmoidal dechanneling function has
been proven effective, it is the authors’ firm belief that
further experimental and theoretical work with a variety
of beams and crystals is required, before a complete under-
standing of the dechanneling mechanism is accomplished.
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